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Abstract

A new micromechanical model is presented to simulate the steady!state axial propagation of kink bands
investigated experimentally in the accompanying paper "Part I#[ The _bers are in a hexagonal array and are
assumed to be isotropic and linearly elastic\ while the matrix is modeled as an elastic!powerlaw viscoplastic
solid[ Matrix properties for the model are determined from shear tests on the composite and compression
tests on neat PEEK[ The model is used to predict the propagation stress "sP# of the AS3:PEEK composite
and to investigate the sensitivity of sP to band inclination\ matrix properties\ and loading rate[ A simple
model recently reported in the literature is calibrated to the current material system and compared with the
present experimental data and model predictions[ The micromechanical model is found to predict the
propagation stress reasonably well and to capture the rate dependence of the composite[ The simple model
is found to capture the trends of the behavior[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The major characteristics of the phenomenon of quasi!static axial propagation of a kink band
in an aligned _ber composite "AS3:PEEK# were discussed in Part I of this two part series
using experimental measurements and observations[ Here we present an idealized model of the
phenomenon and use it to examine the sensitivity of the propagation stress to several of the
parameters of the problem[ The model is in the same spirit as the three!dimensional micro!
mechanical model used in Hsu et al[ "0887# to study the onset of failure of such composites[
Whereas the emphasis there was on the prediction of the e}ect of small initial _ber imperfections
on the onset of failure and of the localization events that follow\ here we are concerned with the
steady!state\ quasi!static\ axial propagation of a kink band already in place\ that is\ after it has
been initiated[ In Hsu et al[ we idealized the composite as a hexagonal array of circular\ elastic
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_bers surrounded by an elasto!plastic matrix[ This geometric idealization is also adopted here\
but\ in view of the added complication of the rate sensitivity of the propagation stress demonstrated
in the experiments\ the matrix is now modeled as an elastic!powerlaw viscoplastic solid[ The
performance of this model will be evaluated by direct comparison with the experimental results in
Part I[

Budiansky et al[ "0886#I recently developed a simple model for steady!state kink band broad!
ening[0 We will calibrate it to our material constants and evaluate its performance vis!a�!vis the
experimental and numerical results of the present study[

1[ Analysis

1[0[ Model domain and discretization

The hexagonal distribution of _bers used in the composite model is shown in Fig[ 0"a#[ The
_bers are assumed to be circular with diameter h and to have a spacing that corresponds to a _ber
volume fraction "vf# of 9[59[ Figure 0"b# shows a characteristic cell of the material which will be
used to calibrate the constitutive model described below[ The width of the cell "c# is related to the
_ber volume fraction by

c � hX pz2

5vf

[ "0#

A three!dimensional view of the composite is shown in Fig[ 1[ In the experiments presented in
Vogler and Kyriakides "0886#I and in the preceding paper "Part I#\ the composite plate specimens
were tested under essentially {{plane strain|| compression[ This was achieved by clamping the
specimen between two smooth steel plates[ Post!failure examination of kink bands con_rmed that
the _bers inside them rotated only in the plane of loading "x0Ðx1 plane#[ Motivated by this\ we
impose a similar condition on the model by requiring the deformation to be quasi!planar[ In
addition\ the net strain in the x2!direction is required to be zero[ Under these conditions\ it becomes
possible to limit attention to a characteristic slice of the material of thickness "z2:1#c identi_ed
in Fig[ 1[ The two lateral surfaces of the slice are assumed to remain plane[

The micromechanical models used to study the onset of failure of such composites "Kyriakides
et al[\ 0884 ^ Kyriakides and Ru}\ 0886I ^ Hsu et al[ 0887# con_rmed the suggestions of Argon
"0861# and Budiansky "0872# that the critical load is a limit load instability strongly dependent on
small _ber misalignments coupled with the nonlinearity of the composite response in shear "see
also Budiansky and Fleck\ 0882#[ Perhaps more importantly though\ as a result of the more
complete accounting of the characteristics of the material "axial sti}ness\ _ber bending sti}ness\
reasonably accurate spatial distribution of the _bers and matrix\ accurate representation of the
inelastic characteristics of the material\ etc[# it became possible for the _rst time to follow the
evolution of post!failure events[ It was demonstrated that\ following the limit load\ deformation

0" #I Refers to _gures and references in Part I[
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Fig[ 0[ "a# Composite idealized as a hexagonal array of round _bers in a PEEK matrix[ "b# A representative cell for
simulations of shearing response[

localizes into a narrow band of material which initially is essentially at 89> to the _bers "b � 9#[
Through the path!following quasi!static solution scheme used\ the band was shown to sim!
ultaneously rotate and broaden while the overall load drops[ In the process\ the _bers develop ever
increasing bending stresses at the edges of the band and eventually break[ We suggested that it is
perhaps this breaking of the _bers that locks in the {{elusive|| band angle b[ For the model with
the hexagonal _ber distribution\ the band inclination and width corresponding to when _ber failure
is expected were reasonably enough to give credence to this suggestion[ On the other hand\ some
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Fig[ 1[ A three!dimensional rendering of geometry of idealized composite[

_ber:matrix systems seem to kink without signi_cant breaking of the _bers "Moran and Shih\
0887I ^ Fleck et al[ 0886 ^ unpublished results by Vogler and Kyriakides\ 0886#[ Thus\ other factors
may play a role in setting the inclination of the band[

The quasi!static calculations also clearly showed the response to be highly unstable "char!
acterized by limit and turning points# which explains why it has been so di.cult to capture
experimentally the formation of a kink band in uniformly loaded specimens like\ for example\ our
rods and plates[ In both types of specimens\ we know that the band initiates at an edge due to the
presence of a dominating imperfection and zips across the specimen at high speed[ These\ of course\
are conditions which to date have not been simulated by any analysis[ Thus\ the exact evolution
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Fig[ 2[ Characteristic microsection of composite used for simulating axial propagation of kink bands[

of events that lead to the formation of a kink band with a well de_ned inclination remain somewhat
vague[ However\ enough is known at this time to be able to say that the formation of the kink
band is through a post!failure process of localization[ As a result\ we seriously doubt the chances
of success in predicting the band inclination from just prefailure considerations of the composite
as has been attempted by many authors "often motivated by success in predicting the inclination
of the seemingly similar\ but actually very di}erent\ inclined shear bands in metal strips in tension#[

In the experiments we have performed on AS3:PEEK "b¹ � 04[4># but also IM7:PEEK
"b¹ � 00[4># composites\ the band inclination is so repeatable that\ despite the di.culties in pre!
dicting its value described above\ we have come to consider this angle a parameter characteristic
of the material[ Since the main objective of the present e}ort is not to model the onset of failure
but rather to simulate steady!state propagation of a kink band which is already in place\ in what
follows the band inclination will be _xed a priori[ Thus\ the specimen analyzed has a lower edge
with an initial inclination b as shown in Fig[ 2[ This can be thought of as the edge of a kink band
which has already formed[ The boundary conditions seen by the vertical _bers of the intact material
are idealized as follows[ The lower left point of each of the _bers in the strip analyzed is assumed
to be hinged in a way that allows lateral movement as shown schematically in the _gure[ Rigid
body motion is precluded by _xing one of the hinges in space[

An additional di}erence from the model in Hsu et al[ "0887# is that the present model is assumed
to be of in_nite width[ This is achieved numerically by requiring that _bers on each of the two
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faces of the characteristic strip deform in a self!similar manner "details of this scheme are presented
in the Appendix#[ This allows one to reduce the size of the domain analyzed to one of width of c
"see Fig[ 0"b##[

In order to adhere to the requirement of self!similar _ber deformation along the width\ the
upper edge of the strip is also made to be inclined "at an angle b to the x1!axis# as shown in the
_gure[ Thus\ the domain is a parallelepiped of height L\ thickness "z2:1#c and width c[ The strip
is loaded by prescribing incrementally a uniform vertical displacement d for all the nodes of the
top surface[ In order to reduce the initial load maximum exhibited during the initial transient part
of the response\ the whole microsection is made to have a 9[4> misalignment with the x0!axis "this
is computationally helpful but not necessary#[

The domain is discretized with 19!node quadratic bricks and 04!node quadratic prisms within
the framework of the nonlinear FE code ABAQUS1 " full integration was used for both#[ The
element distribution used to discretize the cross section is shown in Fig[ 3"a#[ The microsection is
made su.ciently tall "L ½ 64h# to allow development of steady!state propagation of the kink
band[ The elements in the _ber direction are more dense in the lower half of the domain "see Fig[
3"b## as this is the area in which _ber kinking will take place[ It is important to point that in the
simulations that follow the _bers will bend but will not be allowed to break due to the very
signi_cant complication involved in such an undertaking[ The implications of this deviation from
the experimental facts will be discussed later in light of the results[

1[1[ Constitutive model

As reported in Part I\ the nonlinear behavior and rate dependence of the composite were
examined through an extensive study which will be reported independently in the future[ Here we
limit attention on the pure shear behavior presented in Fig[ 7I as we expect it to be the major player
in determining the composite propagation stress[ For the same reason we choose to model the
matrix through the simplest possible inelastic model capable of reproducing the nonlinearity and
rate dependence of the composite shear response\ that is the powerlaw viscoplastic version of the
J1 ~ow rule[ The simplicity of this model outweighs its inherent problem of plastic incompressibility
known not to be appropriate for polymers such as PEEK[

The shear response recorded at g¾ � 09−2 s−0 is selected as the baseline response for calibrating
the elasticÐviscoplastic model described below[ The properties of the two constituents are obtained
as follows[ As in our previous work\ the _bers are assumed to be linearly elastic and isotropic with
the constants given in Table 0"a# "we adopt this knowing that the _bers are anisotropic because at
this time the anisotropy of our AS3 _bers is not quanti_ed#[ We use these _ber properties in the
pure shear micromodel shown in Fig[ 0"b# to calculate the matrix properties required so that the
t01Ðg01 response from the model matches\ as well as possible\ the measured shear response in Fig[
4"a#[ In this calibration calculation\ the matrix is assumed to be a J1 ~ow theory solid which
hardens isotropically[ The micromodel is sheared by _xing the surface cdd?c? and displacing
uniformly the surface abb?a? as indicated in Fig[ 0"b# while requiring that the surfaces abcd and
a?b?c?d? deform in a self!similar manner[

1 We are grateful to Hibbitt\ Karlsson and Sorensen\ Inc[ for making ABAQUS available under academic license[
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Fig[ 3[ FE discretization of micromodel[

The best _t response calculated is shown with a dashed line in Fig[ 4"a#[ The matrix stressÐstrain
response which yielded this _t is shown in Fig[ 4"b#[ In Hsu et al[ "0887# we pointed out that when
the measured stressÐstrain response of neat PEEK was used in a similar calculation\ the predicted
shear response was in good agreement with measured results in the elastic range and up to a strain
of approximately 0[4)[ Subsequently\ it underpredicted the experimental results[ PEEK is a
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Table 0[ Mechanical properties of composite constituents
"a#

AS3 Fibers

Ef msi
"GPa# nf

20[9 9[152
"103#

"b#

APC!1 "PEEK# Matrix

Em ksi s9m

"GPa# nm "MPa# o¾9 s−0 m

483 9[245 2[8 1[4×09−2 9[919
"3[09# "16#

semicrystalline polymer and is thought to crystallize di}erently in the composite due to the presence
of the _bers "see Jar et al[\ 0881#[ The thermal history is known to a}ect PEEK also "Cebe et al[\
0876#[ Both of these factors are suspected to contribute to this di}erence[ Accurate prediction of
the shear response up to 0[4) was su.cient for establishing the onset of failure\ the main concern
of Hsu et al[ "0887#[ In the present problem\ the large strain response of the material is of
paramount interest[ Thus\ use of the neat properties was no longer an acceptable option\ and they
were replaced by the in situ stressÐstrain response extracted in the manner described above[ The
di}erence between the neat and in situ responses can be seen in Fig[ 4"b#[

The basic features of the elasticÐviscoplastic model used for the matrix are as follows[ Strain
increments are assumed to consists of an elastic part and an inelastic part

o¾ � o¾e¦o¾p[ "1#

Elastic deformations are linear and isotropic and are related to stresses by

o¾e �
0¦nm

Em

s¾−
nm

Em

tr"s¾ #I or s¾ � C"Em\ nm#o¾e "2#

where the Young|s modulus "Em# and the Poisson|s ratio "nm# are assumed to be independent of
rate "values given in Table 0"b##[

The inelastic part of the deformation "o¾p# is assumed to exhibit a simple power law rate
dependence "Nadai\ 0849#\ which for a uniaxial state of stress is given by

0
o¾p

o¾91
m

�
s

S"op#
[ "3#
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Fig[ 4[ "a# Measured shear response of AS3:PEEK and _t[ "b# Comparison of stressÐstrain responses of neat and in situ
PEEK[

Here\ o¾9 is a reference strain rate\ S"op# is the ~ow stress measured when o¾p � o¾9\ and m is the rate
exponent[ The yield stress "s9m# was selected to be 2[8 ksi "15[8 MPa# and the inelastic part of the
response was _tted with a multilinear _t "37 segments of variable strain spans#[ The value of the
rate exponent was found in the usual way to be 9[919 from a set of compression tests on neat
PEEK cylinders tested at strain rates in the range 09−3 ¾ o¾ ¾ 099[

The model was generalized to the multiaxial setting through the classical associative plasticity
framework "e[g[\ see Peirce et al[\ 0873#[ The plastic strain rate is given by

o¾p � L
1f
1s

"4#

with the following choice for f ]

f � se � z
2
1
s = s\ s � s−0

2
"tr s#I[ "5#

A work compatible measure of equivalent strain rate is given by
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o¾p
e � z

1
2
o¾p = o¾p[ "6#

Substituting "3#\ "5# and "6# :"4# yields

o¾p � o¾p
e 0

2
1

s

se1� o¾9 0
se

S"op
e#1

0:m

0
2
1

s

se1 "7#

where

op
e � g

t

9

o¾p
e dt[ "8#

By combining "2# and "7# through "1# and inverting we arrive at

s¾ � C o¾− 0
2o¾p

e

1se1C s[ "09#

For numerical expediency\ the value of o¾p
e in a given time increment "Dt# was evaluated through

the forward gradient method "Peirce et al[\ 0873#[ This method linearly interpolates the values of
o¾p
e at t and t¦Dt as follows ]

Dop
e

Dt
� ð"0−j#o¾p

e =t¦jo¾p
e =t¦DtŁ "00a#

where j"$ð9\ 0Ł# is a numerical parameter selected for optimum performance and

o¾p
e =t¦Dt � o¾p

e =t¦
1o¾p

e

1se

Dse¦
1o¾p

e

1op
e

Dop
e [ "00b#

In the present problem\ j � 9[4 was found to yield optimum results[ "An extensive evaluation of
this model for simulating complex loading histories of another polymer can be found in Papka
and Kyriakides\ 0887\ where the model was used with success in an analysis of crushing of a
polycarbonate honeycomb[#

The last variable of the model to be determined was the strain rate of the base response "o¾9#[
This was established through an iterative process as follows[ The constitutive model with the
material parameters given in Table 0 along with the matrix stressÐstrain response in Fig[ 4"b#
"solid line# was used to conduct a simulation of a pure shear test on the micromodel shown in Fig[
0"b#[ The test was conducted at an average rate of g¾ � 09−2 s−0[ During the _rst iteration\ o¾9 was
assigned a best guess value[ An updated guess was produced depending on whether the calculated
response was higher or lower than the one measured[ The process was repeated until the calculated
response matched the experimental one[ In this converged {{solution|| o¾9 � 1[4×09−2 s−0[ This
value was found to be in good agreement with the mean value of the strain rates at the integration
points in the matrix when the plateau stress is reached[

The fully calibrated constitutive model was then used in the pure shear micromodel to reproduce
the set of composite shear responses in Fig[ 7I[ The predicted responses are compared to those
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Fig[ 5[ "a# Comparison of measured and predicted shear responses at di}erent strain rates[ "b# Model shear responses
at large strains[

measured in Fig[ 5"a#[ The predictions are seen to be in reasonably good agreement with the
measured results for all strain rates[ Interestingly\ the rate exponent predicted for the composite
was found to correspond very closely to that of the matrix[

One last constitutive issue must be addressed before moving on to the simulation of steady!state
broadening of kink bands[ The experiments have clearly demonstrated that the shear deformation
in the kink band reaches values as high as 39>[ Since our shear experiments terminated at strains
of the order of 4Ð5)\ we do not know exactly the material response at the large shear angles of
interest[ We arbitrarily extrapolated the basic shear response in Fig[ 4"a# so that at a strain of 6)
it smoothly reaches a stress plateau of 01[87 ksi "78[4 MPa#[ This results in a stress plateau in the
in situ matrix of 11[4 ksi "044 MPa# which is achieved after a strain of 07[7)[ With these additional
assumptions\ the composite shear response predicted by the model at shear strain rates spanning
_ve decades are illustrated in Fig[ 5"b#[ A stress plateau is seen to develop at larger shear strains
for all three cases shown[

It should be pointed out that during the bendÐbreakÐrotate process experienced by the deforming
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zone adjacent to the band\ the material undergoes a complex loading history which includes shear
and transverse stresses[ In the early stages of bending\ the transverse stresses are tensile but
subsequently become compressive[ Thus\ transverse cracking or some other form of damage cannot
be precluded in practice[ In the experiments\ transverse cracking was not observed ^ thus\ if cracks
did form they must have closed when the transverse stress switched to compression[ This possible
complication will not be considered in our model[

2[ Simulation of kink band propagation

2[0[ Kink band propa`ation at dþ:h � 9[4 s−0

The main characteristic dimension of the problem is the _ber diameter h "�6 mm*9[17×09−2

in#[ Thus\ h will be used to normalize other dimensions[ The _rst microsection analyzed has a
height L � 64h and its edges are inclined at 04>[ The microsection is loaded at a constant prescribed
end!displacement rate "d¾# very much like in the experiment[ In order to match the experimental
conditions closely\ two di}erent displacement rates will be used[ Initially "initiation stage#\ when
the deformation in the microsection is uniform\ a slower displacement rate of dþ:h � 4[3×09−2 s−0

is used[ This results in a strain rate which matches that of our 0[75 in "35[1 mm# tall plate during
the initiation phase of the test[ Subsequently\ when the deformation localizes\ the displacement
rate is switched to a value that corresponds to that used in the particular experiment being
simulated[ The displacement supplied now goes entirely into the kink band and\ as a result\ the
di}erence in height between the plate tested and the micromodel analyzed is no longer relevant[

Figure 6 shows a typical stress!end shortening response produced where

d¾ "t# � g
t

9

d¾ dt "01#

and s00"t# is the corresponding average stress at the top surface of the microsection[ The initial
"�9 # and a set of deformed con_gurations corresponding to the points on the response identi_ed
by numbered solid bullets\ are included in the _gure[ The microsection initially deforms elastically[
Plasti_cation of the matrix leads to a load maximum\ and subsequently deformation is seen to
localize at the lower edge of the microsection[ The value of the load maximum is characteristic of
the particular setup we use and has no other useful meaning[ Although the eccentric hinging of
the _bers at the lower edge is su.cient disturbance to initiate the localized deformation\ by
misaligning all the _bers by 9[4> the value of the load maximum is reduced further[ It is important
to point out that\ as is the case for other propagating instabilities "Kyriakides\ 0883#\ such details
"method of hinging of _bers\ _ber misalignment angle\ etc[# a}ect the initiation load but have no
e}ect on the steady!state propagation process[

The localized deformation is in the form of local bending of a strip of _bers at the lower edge
clearly seen in con_guration �0 [ Localization progresses with a net drop in the mean stress[ In the
neighborhood of equilibrium point �0 \ the end displacement rate is increased to dþ:h � 4×09−0

s−0\ that is\ a value corresponding to the rate of the experiment in Figs 2IÐ5I[ A small local stress
peak develops as a result of this sudden increase in rate\ but the response reverts quickly to its
downward trajectory[ By con_guration �1 \ the {{knee|| of bent _bers has moved away from the
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Fig[ 6[ Numerical simulation of axial propagation of a kink band[ "a# Axial stress!end shortening response[ "b# Sequence
of con_gurations of the microsection analyzed[

lower edge[ We now have two distinct zones ] a zone of rotated but straight _bers at the lower end
and a zone of straight _bers at the upper end[ The two are joined by a transition zone of bent
_bers "the knee# which has a width of the order of 09h[ As displacement is supplied at the top end\
the width of the bent zone of _bers grows and the knee moves upwards\ essentially unaltered[
Thus\ a steady!state process has been reached and this is re~ected by the stress plateau that
develops in the response[ In the experiments\ although most of the bent _bers broke into small
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segments\ zones of bent but unbroken _bers could be found at the edges of kink bands[ The size
and curvatures of these bent zones are similar to those seen in Fig[ 6[

The plateau stress represents the propagation stress "s¼P# of the problem as set up[ At this
displacement rate\ s¼P � 47 ksi "399 MPa# which compares with a mean value at 58[5 ksi "379
MPa# measured in the eight experiments reported in Part I and a range of 50Ð66 ksi "310Ð420
MPa#[ The _bers in the bent zone rotate to 25[7> "f¼ P# which compares with a mean value of 39[4>
measured directly in four experiments and a range of 39Ð31>[ That is\ the model composite is less
compliant[ Possible reasons for this are ] the _bers in the model are not allowed to break\ the
plastic deformation of the matrix was assumed to be volume preserving which is known not to be
exactly correct for this polymer\ and transverse microcracks or some other form of material damage
may take place in practice but were not allowed in the model[ These issues may have also
contributed to lowering the predicted propagation stress[ We suspect\ however\ that the latter may
be more related to a rather low choice made for the value of the plateau stress for the shear
response of the composite[ Order!of!magnitude calculations of the energy expended to create new
surfaces due to the breaking of the _bers into fragments of the order of 09h\ indicate that this
contribution is relatively small[ Therefore this should not signi_cantly a}ect s¼P[

2[1[ Parametric study of propa`ation stress

The micromodel was subsequently used to conduct a limited parametric study of the propagation
stress[ In the present work the kink band inclination b is prescribed[ We thus conducted a
series of calculations in which b was varied from 00Ð08> at two degree intervals[ The calculated
propagation stresses and the corresponding _ber rotation angles are listed in Table 1[ The propa!
gation stress is seen to decrease from 58[2 ksi "367 MPa# at b � 00> to 49[2 ksi "236 MPa# at
b � 08>[ Correspondingly\ f¼ P increases from 21[6Ð30[7>[

Table 1[ E}ect of kink band incli!
nation on predicted propagation
stress and _ber rotation

"d¾:h � 4×09−0 s−0#

s¼P ksi
b9 f¼ >P "MPa#

00 21[6 58[2
"367#

02 23[5 52[0
"324#

04 25[7 47[9
"399#

06 28[1 42[6
"269#

08 30[7 49[2
"236#
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Table 2[ E}ect of level of ultimate stress of shear response of
propagation stress

tu ksi s¼P ksi$
Case "MPa# "MPa# "tu:tu1# "s¼P:s¼P1#

0 01[9 42[1 9[812 9[806
"71[7# "256#

1 02 47[9 0[9 0[9
"78[6# "399#

2 03[2 52[9 0[0 0[975
"87[5# "323#

$ d¾:h � 4×09−0 s−0[

As indicated earlier\ there is some uncertainty about the level of the stress plateau "tu# in the
shear response in Fig[ 5"a#[ For this reason\ we examined the sensitivity of the propagation stress
on this parameter as follows[ The matrix stressÐstrain parameters were varied to produce composite
shear responses of three ultimate stress levels "at the base rate of g¾ � 09−2 s−0#[ The three levels of
tu are listed in Table 2[ The one corresponding to case 1 is the same value to produce the results
in Fig[ 6[ The matrix stressÐstrain responses generated in this fashion were then used in the kink
band propagation FE model[ The propagation stresses calculated for each of the three material
responses are listed in Table 2[ Changing of tu is seen to produce a corresponding change in s¼P[

The two variables tu and s¼P for cases 0 and 2 were then normalized with the corresponding
values of case 1[ We observe that\ at least in the range of tu considered\ the change in s¼P is almost
identical to the change in tu\ or in other words\ s¼P scales with tu[ Since we believe that the
extrapolation of the base shear response we used is probably a lower bound of the actual response\
if sP scales with tu our predictions of the propagation stress can also be considered lower bound
estimates[

Recently Budiansky et al[ "0886#I produced a relatively simple expression for estimating s¼P[ The
essence of their model is as follows[ The kink band is assumed to propagate in a steady!state
manner by a unit distance[ The external work done by the applied stress is calculated and equated
to an estimate of the internal energy expended due to the shearing of the kink band[ The composite
is assumed to be rate independent which yields the following expression for the propagation stress

s¼P"b\ fmax# �
g

f
max

9

t"f# cos"b−f# df

cos b"0− cos fmax#
[ "02#

In their calculations fmax was assumed to be 1b[ Moran et al[ "0884#I developed a similar expression
for s¼P with two di}erences[ First\ they assumed that the shear response is initially elastic!perfectly
plastic but hardens when the shear strain reaches a certain value "g ½ 9[2# ^ second\ the metric
introduced in "02# to account for _nite deformations was neglected[

We use this expression to establish trends for s¼P similar to the ones derived via our model[ To
make the comparison of the result of eqn "02# with those obtained numerically meaningful\ in
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Fig[ 7[ Propagation stress predicted using eqn "02# for various values of band inclination b and maximum _ber rotation
fmax[

place of t"f# we use the extrapolated shear response of the composite for g¾ � 09−2 s−0 "Fig[ 4"a##
but neglect its rate dependence[ The integration is then performed numerically[ In addition\ in
view of the evidence to the contrary reported in Part I\ we will relax the assumption that fmax � 1b[

We _rst examine the sensitivity of s¼P to the two important variables b and fmax[ We vary b from
00Ð08> at two degree intervals and in each case we calculate s¼P for 1b ¾ fmax ¾ 2b[ The results are
shown in Fig[ 7[ For all values of b considered\ the propagation stress is seen to drop as fmax is
increased[

We now perform a direct comparison of the predictions of s¼P from eqn "02# with those yielded
by our FE model[ Two sets of predictions are made using "02#[ First\ the propagation stress is
calculated for various values of b by adhering to the assumption that fmax � 1b[ The same
calculations are then repeated\ but this time we assign fmax the value found in the corresponding
run of the FE model "given in Table 1#[ The results are shown in Fig[ 8[ The FE results clearly
indicate that the propagation stress drops as b is increased[ Both sets of results from eqn "02#
capture this trend\ which is reassuring[ However\ the more realistic of the two sets of predictions\
that is\ the one for fmax � f¼ P\ is rather low by comparison to the FE predictions[

The case of b � 04> is the one which corresponds to the experiments reported in Part I[ The
mean values and the range measured for variables b\ sP and fP are listed once more in Table 3[
Included are the corresponding predictions from the FE model and those of eqn "02# for fmax of
29 and 25[7>[ The FE predictions are somewhat lower than the experimental results possible for
the reasons given above[ The value of sP yielded by eqn "02# is quite a bit lower than the FE
predictions when the more realistic value of fmax is used[ The prediction will become even lower if
the _ber rotation angle is given the experimental value 39[4>[ This indicates that changing the value
of fmax used in "02# to one more representative of the value measured at the propagation stress is
not the most appropriate way to improve the performance of this model[ A modi_cation which
includes a more realistic representation of the mechanism through which the deformation inside



S[!Y[ Hsu et al[ : International Journal of Solids and Structures 25 "0888# 464Ð484 480

Fig[ 8[ Comparison of propagation stresses predicted by the FE model and eqn "02#[

Table 3[ Comparison of measured and predicted values of propagation stress

Experiments FE Model� Eqn "02# Eqn "02#

b> 04[4$ 04 04 04
02Ð06%

f>P 39[4$ 25[7 29 25[7
39Ð31%

sP ksi "MPa# 58[5 "379#$ 47[9 49[3 30[4
50Ð66 "310Ð420#% "399# "237# "175#

� dþ:h � 4×09−0 s−0[
$ Mean value[
% Range[

the kink band is arrested should be explored[ Interestingly\ eqn "02# yields correctly the pro!
portionality of sP to tu found from our results see also eqn "13# in Budiansky et al[ 0886I#[

2[2[ Effect of rate on the propa`ation stress

The FE model is now used to examine the e}ect of the displacement rate dþ on the calculated
propagation stress\ adhering to the procedure followed in the experiments "Part I#[ The kink band
inclination is _xed at 04>[ The band is initiated very much in the fashion described in the previous
section "dþ:h � 4[3×09−2 s−0#[ When deformation localizes and the load starts to drop\ the dis!
placement rate is switched to the desired value[ Steady!state band propagation is reached and\ as
a result\ a well de_ned stress plateau is traced[ Following this\ the displacement rate is changed by
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Fig[ 09[ Axial stress!end shortening response for simulations in which the loading rate was "a# decreased and "b#
increased by two decades during the steady!state propagation[

two decades[ The response experiences a small transient but eventually stabilizes to a new stress
plateau and a new steady!state condition develops[

Sample results from such simulations are shown in Fig[ 09[ Figure 09"a# shows the response
from a simulation in which the band is _rst propagated at a rate of dþ:h � 4×09−0 s−0[ The
propagation stress is at the same level as in the case presented in Fig[ 6 "see Table 4#[ When the
overall shortening of the specimen reaches 2)\ the rate at which the specimen is compressed is
reduced by two decades[ Following a brief transient\ the propagation stress is seen to drop to a
lower level of 42[2 ksi "257 MPa#[ Interestingly\ the rotation of the _bers inside the kink band
decreases by approximately half a degree\ presumably due to the lower stress[
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Table 4[ E}ect of end displacement rate on pre!
dicted propagation stress and _ber rotation

"b � 04>#

s¼P ksi
"dþ:h# s−0 f¼ >P "MPa#

4×090 26[1 52[9
"323#

4×09−0 25[7 47[9
"399#

4×09−2 25[3 42[2
"257#

The _rst part of the response shown in Fig[ 09"b# is the same[ The _rst plateau stress is the one
corresponding to dþ:h � 4×09−0 s−0[ In this case when d:L � 9[92 the displacement rate is increased
by two decades[ As a result\ we see the propagation stress increase to 52 ksi "323 MPa# while
simultaneously f¼ P increased by approximately one half of a degree[ Thus\ we see that a two decade
change in the displacement rate has the result of increasing or decreasing the calculated propagation
stress by approximately 09) as was the case in the experiments[

In the previous section we examined the e}ect of the ultimate stress of the composite base shear
response tu and sP[ The three levels of tu used in those calculations were purposely chosen to be
the same as those obtained by changing the shear strain rate by two decades from the base value
of g¾ � 09−2 s−0 "Fig[ 5"b##[ It is interesting to observe that the calculated values of sP in Table 4
are very similar to the three values listed in Table 2[ In other words\ changing the loading rate two
decades has the same e}ect on sP as shifting tu the same amount as a two decade change in g¾
induces[

3[ Conclusions

A micromechanical model of axial propagation "broadening# of kink bands in _ber:matrix
composites has been presented[ The model is used to simulate steady!state propagation of an
existing kink band inclined at a prescribed angle b to the x1!axis of the composite[ The material is
idealized as a hexagonal array of round elastic _bers in an elastic!powerlaw viscoplastic matrix[
Since deformation is known to be planar "Part I#\ it was possible to limit attention to a characteristic
slice of the material[ The slice is made to behave as if it were in_nitely wide by imposing periodicity
conditions on the sides of the micromodel used[ The model deviates from the experimental
observations in that the _bers are allowed to bend but not to break[

An important ingredient of the model is the calibration of the elasticÐviscoplastic constitutive
model used for the matrix[ The in situ properties of the PEEK matrix were extracted by matching
simulations of pure shear to experimental data for the AS3:PEEK composite[ The in situ properties
were found to be di}erent from properties measured in neat matrix[ The rate exponent m of the
matrix was determined to be 9[919 from a series of compression tests at various strain rates on
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neat PEEK[ The constitutive model was shown to reproduce successfully the rate independence of
the composite shear response over a shear strain rate range spanning _ve decades[

The micromechanical model was used to calculate the propagation stress of the composite at
various end displacement rates[ For the base rate of d¾:h � 4×09−0 s−0\ the calculated propagation
stress was 47 ksi "399 MPa# compared with a mean value from eight experiments of 58[5 ksi "379
MPa# and a range of 50Ð66 ksi "310Ð420 Mpa#[ The calculated _ber rotation angle inside the kink
band was 25[7> which compares with a 39[4> average value measured[ Part of the di}erence in the
calculated propagation stress is attributed to some uncertainty in the plateau stress assumed for
the composite shear response at large shear strains[ The model was found to accurately reproduce
the e}ect of rate of compression on the propagation stress[ A change of two decades in the applied
end displacement rate produces a 09) change in the propagation stress[ This agrees well with the
experimental results in Part I[

A limited parametric study was performed with the current model and one recently developed
by Budiansky et al[ "0886#I[ The propagation stress was found to scale with the plateau stress of
the shear response for both models[ The simpler model was found to be useful for evaluating trends
in sP[ We expect its quantitative accuracy to be improved when a more realistic representation of
the mechanism through which the deformation inside the kink band is arrested is incorporated[
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Appendix ] Periodicity conditions for micromodel

The kink band was modeled to be of in_nite width by imposing the following periodicity
conditions[ The displacements of nodes on the right side of the micromodel are related to the
displacements of their counterparts on the left side as follows[ Consider node A on the LHS of the
model and the corresponding node A? on the RHS "see Fig[ 3"b##[ Vertical "x0# and out!of!
plane "x2# displacements of A and A? nodes are constrained to be the same[ The horizontal "x1#
displacements of the nodes are related in such a way as to allow a uniform transverse strain in the
composite[ Thus\ they are related by ]

u1"A?# � u1"A#¦otb "A0#

where ot is the uniform transverse strain of the composite and b is the width of the section modeled[
The other nodes on the two vertical sides of the micromodel are treated in the same fashion[ Note
that the value of ot is not prescribed ^ rather\ it is determined by the FE calculation[
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